Metabolic profiles of exercise in patients with McArdle disease or mitochondrial myopathy.
نویسندگان
چکیده
McArdle disease and mitochondrial myopathy impair muscle oxidative phosphorylation (OXPHOS) by distinct mechanisms: the former by restricting oxidative substrate availability caused by blocked glycogen breakdown, the latter because of intrinsic respiratory chain defects. We applied metabolic profiling to systematically interrogate these disorders at rest, when muscle symptoms are typically minimal, and with exercise, when symptoms of premature fatigue and potential muscle injury are unmasked. At rest, patients with mitochondrial disease exhibit elevated lactate and reduced uridine; in McArdle disease purine nucleotide metabolites, including xanthine, hypoxanthine, and inosine are elevated. During exercise, glycolytic intermediates, TCA cycle intermediates, and pantothenate expand dramatically in both mitochondrial disease and control subjects. In contrast, in McArdle disease, these metabolites remain unchanged from rest; but urea cycle intermediates are increased, likely attributable to increased ammonia production as a result of exaggerated purine degradation. Our results establish skeletal muscle glycogen as the source of TCA cycle expansion that normally accompanies exercise and imply that impaired TCA cycle flux is a central mechanism of restricted oxidative capacity in this disorder. Finally, we report that resting levels of long-chain triacylglycerols in mitochondrial myopathy correlate with the severity of OXPHOS dysfunction, as indicated by the level of impaired O2 extraction from arterial blood during peak exercise. Our integrated analysis of exercise and metabolism provides unique insights into the biochemical basis of these muscle oxidative defects, with potential implications for their clinical management.
منابع مشابه
Effect of fuels on exercise capacity in muscle phosphoglycerate mutase deficiency.
BACKGROUND Muscle phosphoglycerate mutase deficiency (PGAMD) is a rare, recessively inherited metabolic myopathy that affects one of the last steps of glycolysis. Clinically, PGAMD resembles muscle phosphorylase deficiency (McArdle disease) and phosphofructokinase deficiency (PFKD). However, it is unknown whether PGAMD is associated with a second-wind phenomenon during exercise, as in McArdle d...
متن کامل[McArdle disease presenting with rhabdomyolisis and acute kidney injury].
McArdle disease typically presents in childhood or young adults with myalgia, exercise intolerance, cramps and myoglobinuria. Deficiency of myophosphorylase enzyme results in inability to degrade glycogen stores, causing glycogen accumulation in muscle tissue and energy deficit. Evolution with rhabdomiolysis may occur and can be complicated with acute kidney injury but rarely, in about 11% of c...
متن کاملMcArdle Disease and Exercise Physiology
McArdle disease (glycogen storage disease Type V; MD) is a metabolic myopathy caused by a deficiency in muscle glycogen phosphorylase. Since muscle glycogen is an important fuel for muscle during exercise, this inborn error of metabolism provides a model for understanding the role of glycogen in muscle function and the compensatory adaptations that occur in response to impaired glycogenolysis. ...
متن کاملCan a Low-Carbohydrate Diet Improve Exercise Tolerance in Mcardle Disease?
McArdle disease is a rare disorder of skeletal muscle carbohydrate metabolism, with an estimated prevalence between 1: 100,0001:167,000 [1]. Affected individuals have mutations in both alleles of the PYGM gene, which encodes myophosphorylase, the skeletal muscle isoform of glycogen phosphorylase. McArdle disease is equally represented in both sexes and is inherited in an autosomal recessive man...
متن کاملFree Mg2+ concentration in the calf muscle of glycogen phosphorylase and phosphofructokinase deficiency patients assessed in different metabolic conditions by 31P MRS
BACKGROUND The increase in cytosolic free Mg2+ occurring during exercise and initial recovery in human skeletal muscle is matched by a decrease in cytosolic pH as shown by in vivo phosphorus magnetic resonance spectroscopy (31P MRS). To investigate in vivo to what extent the homeostasis of intracellular free Mg2+ is linked to pH in human skeletal muscle, we studied patients with metabolic myopa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 31 شماره
صفحات -
تاریخ انتشار 2017